Find Your Free Essay Examples

This Reaction is named after its discoverer, the German chemist Georg Wittig.

Wittig reaction is an organic chemical reaction wherein an aldehyde or a ketone is reacted with a Wittig Reagent (a triphenyl phosphonium ylide) to yield an alkene along with triphenylphosphine oxide.

This Reaction is named after its discoverer, the German chemist Georg Wittig. He was also awarded the 1979 Nobel Prize in Chemistry for this discovery. An example of the Wittig Reaction is provided below.

This reaction is a very common method used in the organic synthesis of alkenes. One of the prime advantages of alkene synthesis is that the site of a double bond is precisely fixed in comparison to the mixtures of differently located double bonds formed by alcohol dehydration.

Wittig Reagent is a term used to refer to an organo-phosphorus ylide. Compounds wherein two adjacent atoms contain complete octet electronic configurations and hold opposite charges are called Ylides.

Since phosphorus exhibits the ability to hold more than 8 electrons in the valence shell, the following resonance structures can be drawn :

The ylide from wherein the phosphorus is positively charged and the carbon is negatively charged significantly contributes towards the Wittig Reaction.

Since the phosphorus atom stabilizes the carbanion, the acidity of the compound increases. Therefore, bases like butyl lithium which are very strong must be used in the formation of the Ylide. The reaction detailing the preparation of a phosphorus ylide is provided below.

([Ph_{3}P^{+}CH_{2}R]X^{-} + C_{4}H_{9}Li rightarrow Ph_{3}P=CHR + LiX + C_{4}H_{10})

The Wittig reaction mechanism proceeds via three steps. These steps are:

Step 1: The negatively charged carbon belonging to the ylide is nucleophilic. This carbon proceeds to execute a nucleophilic attack on the carbonyl carbon of the aldehyde or ketone. This leads to the formation of a charge separated (and dipolar) intermediate called a betaine. This step can be illustrated as follows:

Step 2: The betaine intermediate which is formed in step 1 is now subject to the formation of a new oxygen phosphorus bond, yielding another intermediate which has a four-membered ring structure. This step is illustrated below:

Step 3: In the four-membered ring intermediate, the carbon-oxygen bond and the carbon-phosphorus bonds are cleaved. The oxygen takes both the bonding electrons and forms a new double bond with the phosphorus which lost the bonding pair of electrons to the carbon atom. A new carbon-carbon double bond is formed with this electron pair as well, yielding the required alkene product. This step is illustrated below.

Some advantages of the Wittig reaction include:

A few limitations of the Wittig reaction are:

Some of these limitations can be overcome by following a variation of the Wittig reaction such as the Schlosser modification.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.